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w3 f"\_,l_ajx~—>~6~”where~&} equals 0 or 1, and B is a positive IS j')
N .
: integer. We give necessary and sufficient conditions for T
o such inequalities to define facets of the set covering
R polytope associated to a 0,1 constraint matrix A. These
+ conditions are in terms of critical edges and critical
Q cutsets defined in the bipartite incidence graph associa-
. ted to A, and are very much in the spirit of the work of
" Balas and Zemel on the set packing problem where similar
& notions were defined in the intersection graph of A.
Ej Furthermore, we give a polynomial characterization of a
3 class of 0,1 facets defined from chorded cycles induced
in the bipartite incidence graph. This characterization
.. also yields all the 0,1 liftings of odd-hole inequalities
‘i for the simple plant location polytope. e
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1. INTRODUCTION

Let A be an mxn matrix with 0,1 elements. The convex
hull of the solutions to

Ax < 1

x; € (0,1} 3 =1,...m

has been widely studied in the 1970's see e.g. Fulkerson
(1971), Padberg (1973), Nemhauser and Trotter (1974),
Trotter (1975), Chvatal (1975), Balas and Padberg (1976),
Wolsey (1976), Balas and Zemel (1977). This polytope is
known as the set packing polytope and we denote it by
P(A).

The set covering polytope C(A) is the convex hull
of the solutions to

Ax > 1 l

x5 € 10,11 3 = 1,...,n. J

The facial structure of C(A) has received consider-
able attention only recently, e.g. Balas and Ng (1984, 1986), Con-

forti, Corneil and Majoub (1984), Sassano (1985). Related work
involves the use of both the polytope C(A) and an objective function
to derive cutting planes as proposed by Balas (1979, 1980), Balas

and Ho (1980).

This time lag between the study of P(A) and C(A)
may appear surpising considering the practical import-
ance of the set covering problem. A possible explanation
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ﬂﬁf is that several key concepts for the study of the set pack-
f&ﬁ | ing polytope P(A) did not seem to be transferable to the
covering problem. In this paper, we explore such possibili-
ﬁ—: ties. We concentrate on valid inequalities of the form
13l
:
e I x5 <a (3)
jes
ﬁ$ for the set packing problem and
Aol 1 %528 (4)
jes

iﬁj for the set covering problem, where S € {1,...,n} and «,8
;;g- are positive integers. In other words, we consider linear
;s,; inequalities where the coefficients of the variables xj ’
- for j =1,...,n, are equal to 0 or to 1.
: ﬂ The notions of critical edges and critical cutsets
:;é that were introduced by Chvatal (1975) and Balas and Zemel
Wiy (1977) for the set packing problem can also be defined -
e with respect to another graph - for the set covering pro-
f%: blem. Chvatal used critical edges to give a sufficient
;F§ condition for the inequality (3) to define a facet of
Al P(A). Sassano (1985) showed that the same condition holds
o for the set covering problem, provided the new framework
ﬁ%g is used. In section 2,3 and 4 we parallel ihe results of
;Ha Balas and Zemel (1977). In particular we show in section
S 2 that the sufficient condition of Sassano is not neces-
;gnJ‘ sary. In section 3 we give a necessary condition in terms
ﬁ% of critical cutsets but we show that it is not sufficient.
’%j Finally, in section 4, we give a necessary and sufficient
A condition for (4) to define a facet of C(A).
‘} In section 5, we investigate set covering problems
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ig that have a given inequality (4) as a facet. In particular
*k we consider B-maximal 0,1 matrices A,where maximality

, refers to the property that changing any element of A from
?v < 0 to 1 would render the inequality (4) invalid for C(A).

i For this class of matrices the sufficient condition of

‘i, Sassano is also necessary. This is to be related t. the

- 0,1 facets of the simple plant location polytope which are
ﬁ' generated from B-maximal matrices, see Cho, Padberg and Rao
,& (1983) ., For these facets, it has also been proved that the
i; condition of Chvatal is necessary and sufficient, see Cor-

nuejols and Thizy (1982).

33 Square matrices of odd order with exactly two ones

ff per row and per column are at the hart of the polyhedral
ni; ‘ theory of set packing and set covering problems. Define

A these matrices as odd holes. If A does not contain an odd
}k hole as a submatrix, then P(A) = {x: Ax <1, 0 < x < 1}

§4 and C(A) = {x: Ax > 1, 0 < x < 1}. When these equalities
o do not hold, the facets associated with odd holes are of

, particular importance. In section 6, we give a polynomial
Lj characterization of all the B—méximal matrices arising from
¢ odd holes.
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2. CRITICAL EDGES

For the set packing problem, a useful notion has been
that of the <ntersection graph of a 0,1 matrix A. It is
defined as having a node for each column of A and an edge
for each pair of nonorthogonal columns. It is well known
and easy to check that the feasible solutions of the set
packing problem (1) are in one-to-one correspondence with
the node packings of the intersection graph of A.

Given a graph G, let a(G) be the maximum cardinality
of a node packing in G. An edge of G is said to be critical
if a(G\ e) > a(G), where G\ e denotes the graph obtained
from G by deleting the edge e.

THEOREM 1 (Chvatal 1975). Let G = (V,E) be the in-
tersection graph of a 0,1 matrix A. Let e* C E be the set
of the critical edges of G. If G* = (V,E®) 1s connected,

tnen

defines a facet of the set packing polytope P(A).

For the set covering problem, the intersection graph
of A appears to be less appropriate for the study of C(A).
Rather, we define the bipartite incidence graph of a 0,1
matrix A as follows. The graph B = (V,U,E) has a node
i € U for each row of A, a node j € V for each column of
A and an edge between nodes i € U and j € V if and only
if aij = j in the matrix A. Consider the set T C U. A
set S C V is called a cover of T if every i € T is adja-

cent to at least one node of S. The feasible solutions

h S hat Bl b




A LA a At

of the set covering problem (2) are in one-to-one corres-
pondence with the covers of U.

Given the bipartite graph B = (V,U,E) and a set TCU,
let B(T) be the minimum cardinality of a cover of T. Mo-
reover denote by Gc* = (V,E*) the ceritical graph associated
to B having node set V and edge set (c¢ritical edges) de-
fined as:

*x
E ={(vi.vj)|B(U\Uij) < B(U)}

where Uij € U is the set of the common neighbors of Vi and

vy We assume that B(g) = 0.

THEOREM 2 (Sassano 1985). Zet B = (V,U,E) be tne 2i-
partite incidence graph of a 0,1 matrix A. Let G¢* = (v,E¥)

be the associated critical graph. If G* is connected, then

defines a facet of the set covering polytope C(A).

Observe that, alternately, we denote by 8(A) the co-

' vering number of the 0,1 matrix A. In other words B(A)ZB8(U).

For the set packing polytope, the sufficient condition
given in Theorem 1 is not necessary as was pointed out by
Balas and Zemel (1977). A similar fact can be proved for

the set covering polytope and the sufficient condition of
Theorem 2.

THEOREM 3. Let B = (V,U,E) be the bipartite incidence

graph of a 0,1 matrix A and assume that the inequality:
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1 xj > B(A)

I~

J
<nduces a facet of C(A).

Then the critical graph G*==(V,E*) 18 connected for some

chotces of A and disconnected for other choices.

PROOF. We give an example where G* is connected and

* .
one where G is disconnected.

First consider the matrix:

and the associated incidence bipartite graph

Any edge (Vj,vk) is critical as B(U) = 2 and B(U\ Ujk)=1

where the set Ujk is defined as above. Therefore G* is
the complete graph on 3 nodes and thus is connected. Of

3
course ) xj 2 2 is a facet by Theorem 2.
3=1

Now consider the following 0,1 matrix

e e Y e T e .
e Wy W A _‘J','- N R .; -“"N.‘ RACRERES
g ) ’
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And the associated incidence bipartite graph displayed in
figure 1.
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B = (V,U,E)

Figure 1

R Note that B(U) = 3 (|U|] = 10 and each v, € V has degree 4
&
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10.

in B; so B(U) > 3. Furthermore the set {v1,v2,v4} is a cover
of U).

Now consider the critical graph G* =(V}E*) associated
to B and, for each pair vj,vk of nodes of V denote, as above,
by Ujk € U the set of common neighbors to vj and Ve The
edge (vy,v,) belongs to E* if and only if B(U\ Usp) 2 2.

If [Ujkl < 1, then |U\ Ujkl > 9. But then B (U\ Ujk) > 2
as each node vy € V has degree 4. So, in this case, (vj,vk)
is notv critical.

Now assume that IUjkI > 2. Actually the graph B has
the property that IUjkl < 2. So we get |Ujk| = 2. We di-
stinguish two cases.
(a) 1 <j, k <50r 6 < 3j, k < 10; lUjk\
Then we will show that (vj,vk) is a critical edge.
By symmetry, we can assume w.l.o.g. that j = 1 and

k = 2. ThLen Uyp = {u1,u6}. The set {v3,v5} is a cover of
U\ U12 and therefore 8 (U\ U12) = 2.

This proves that (Vj’vk) is critical.

(b) 1 <3 <5and6 <k <105 [Ug]=2.

Then we will show that (vj,vk) is nor critical.

By symmetry, only two situations can occur depending

on whether Ujk N {u1,...,u5} is even or odd. Namely, we
can assume w.l.o.g. that either j =1, k =6 or j = 1,

k = 10. Now we study these two subcases.

(b1) j = 1 and k = 6.

In U\ U16’ there are five nodes to cover in the set
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{u1,...,u5} and three in the set {u6,...,u10}. Since each
node vy € V covers two nodes from each set, there is no
cover of cardinality 2. So (vj,vk) is not critical.
(b2) 3 =1 and k = 10.

We have |U\ Ujk' = 8. So, in order to cover U\ Usk
with only two nodes of V, we must use two nodes of V that
cover four nodes of U\ Ujk each, i.e. these two nodes must
be chosen from the set {v3,v4,v7,v8}. But any two of these
nodes have at least one common neighbor, and therefore do

not cover U\ Ujk' So (Vj,v is not critical.

)
k
We just proved that G* = (V,E*) is the union of two
node~-disjoint cycles of length five, since only case (a)
gives rise to critical edges.

10
It remains to show that x4 > 3 induces a facet
j=1
of C(A). It is valid since B(U) = 3. In addition, the 10

solutions defined by the columns of the matrix

L U e JE S SR Y
O = O =
- O 2 Ao
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12,

all satisfy the constraints Ax > 1 and verify the inequality

10

] ) Xy 2 3 with equality. Since the above matrix is nonsingu-
‘wly 3=1

fr o Co . . . . ,
ﬁ& lar (it is defined using a nonsingular 5x5 circulant matrix),

:ﬂ? the 10 points that it defines are affinely independent.

i 10

G Thus |} x., > 3 definesa facet of C(a). O

‘;:J j=1 J

&)

oS

,.:: 3. CRITICAL CUTSETS

=

N ‘ A useful concept in the study of the set packing pro-
x blem is that of critical cutset. A cutset F=(S,5) C E of

s:: a graph G = (V,E) 1s the set of all the edges joining nodes
:ﬁ; in S with nodes in the complement set S = V\S. Both S and
- -

L S are assumed to be nonempty.

&R A cutset is critical if a(G\ F) > a(G), where G\ F is the

 ?i graph obtained from G by removing all the edges of F.

|00 «

Jah!

NS

e THEOREM 4 (Balas and Zemel 1977). Let G be the inter-

section graph of a 0,1 matrixz A. If Z xj < a(G) induces

y j=1

“m
’iﬁ a facet of P(A), then every cutset of G is critical.
"1t We introduce a similar notion for the set covering
"~ problem. Consider the bipartite incidence graph B = (V,U,E)

o
g@ ‘ of a 0,1 matrix A. Let S be a nonempty proper subset of V
.,

" and let US C U be the set of all the nodes adjacent to at
s least one node in S and one node in S = V\ S. The set US
S is called a cutset of the bipartite incidence graph B, and
i
HEHA
) \q'rl
et
i
. A A e
t""‘ .l‘o!l‘ '!ll ' " b, \Jf )ﬁ” et " DAOWRA O R A AW ~ N ORI LR TR AR O



in fact,B becomes disconnected if U, and the incident edges

S

are removed from B. The cutset U, induced by S and S is said

S
to be critical if B8(U\ US) < B{(U}.

THEOREM 5., Let B = (V,U,E) be the bipartite incidence

n

graph of a 0,1 matrix A. If } xj > B(U) induces a facet
J=1

of C(A), then every cutset of B is critical.

PROOF. Assume not. Then there exists a subset S C V
such that S,S # # and B (U \ Ug) = B(U) where Ug is the cut-
set defined by S. Let U, C U be the set of nodes of B ad-
jacent to S but not to S and U2 C U those that are adjacent
to S but not to S. Then R (U\ Ug) = B(U)+B(U,) . Thus the
inequality .Z X5 2 B (U) can be written as the sum of the
two inequaliizes .2 Xy 2 B(Uy) and l Xy 2 B(U,).

&S jes
dition, each of these inequalities is valid. Therefore

! %, > B(U) does not induce a facet of C(aA). O
jev J

| —

In ad-

The necessary condition of Theorem 4 given by Balas
and zZemel for the set packing problem is not sufficient
as they pointed out themselves. Similarly, for the set
covering problem, the necessary condition of Theorem 5 is

not sufficient. This is shown next.

THEOREM 6. Let B = (V,U,E) be the bipartite incidence
graph of a 0,1 matrix A. Assume that every c%tset 18

eritical and consider the valid inequality | X > B(U).
. j=1
« Then this inequality does not always define a facet of

C(A).

PROOF. Consider the 10x10 matrix A introduced in the

...............
------------------------

A e e . . e e
PR R e '3_ '« s,
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proof of Theorem 3 and add to it the row (0010111111). We
call A' this 11x10 matrix and B'=(V',U',E') its bipartite
incidence graph.

First we show that every cutset of B' is critical.
10
Using Theorem 5 and the fact that ) xy 2 3 is a facet
j=1
of C(A), we obtain that, in B', every cutset that contains
the node u11 is critical. Now consider any cutset U, of B',
10 € S.
Since Uy, & US' we_must also have {v3,v5,v6,v7,v8,v9} c s.
Now, if {V1,V2} N S # @, then {v3,v5} covers U\ Ug and the
cutset is critical. So the last case to consider is when

S
that does not contain Uyqe W.l.0.g. assume that v

S = {v4}. Then {v1,v2} covers U\ Ug and again the cutset
is critical. So all the cutsets of B' are critical.

0
Now we show that 21 X5 > 3 does not induce a facet
10

of C(A'). Consider theJ solutions introduced in the proof
10

of Theorem 3 as satisfying | x4 = 3 for the problem C(A).
3=1

Note that one of these solutions does not satisfy the

constraint generated by the new row 11 in matrixmA'. In
addition, no other feasible solution satisfies | x, = 3.

s J
j=1
Since only nine affinely independent points satisfy this
10
equation, the inequality z xj > 3 does not induce a facet
3=1
of c(a'). O

4. A NECESSARY AND SUFFICIENT CONDITION

Let A be a 0,1 matrix with column set V and row set U.

In this section we consider general 0,1 inequalities,namely
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inequalities of the form

] x. > B, (5)
jes I~

where S C V and B is a positive integer. The main result,
stated in Theorem 9, is a necessary and sufficient condi-
tion for such inequalities to induce facets of C(A).

It will be convenient to assume in this section that
A has at least two ones per row, thus guaranteeing that
C(A) is a polytope of full dimension.

Let DS be the submatrix of A induced by a set S of
columns of_A and by the rows i such that aij = 0 for
every j € S = V\ S. This operation is known as deleting
the column set S from the 0,1 matrix A. Equivalently,con-
sider the bipartite incidence graph B = (V,U,E) associa-
ted with the matrix A and let B(S) be the subgraph of B
induced by the node set S V R where R C U contains the
nodes that have no neighbor in S. Then B(S) is the bi-
partite incidence graph of DS.

THEOREM 7. If the inequality (5) defines a facet of
C(A), then B8 = B(DS) and (5) defines a facet of C(Ds).

PROOF. Consider a feasible solution such that

)ox, = 8(05) and x. = 1 for every j € S. Since (5)
is a valid inequality, this feasible solution implies
S

B(D”) > B. Now, if B < 8(D5), then no feasible solution
can satisfy (5) with equality, contradicting the fact
that (5) is a facet. This shows 8 = 8(D°).

To show that (5) defines a facet of C(DS), con-

sider n affinely independent solutions {Rk}1<k<n show-

------------




16.

ing that (5) is a facet of C(A). Project these n points in
the space xj =0 for j € S. The n projections still satisfy
(5) with equality. In addition, if the projected space had
dimension less than |S|-1, then the space generated by

{ik}1<k<n would have dimension less than n~1. So the n pro-

jections define an affine space of dimension |S|-1. This
shows that (5) defines a facet of C(D°) provided that this
polyhedron has dimension |S|. This is indeed the case as a
consequence of our assumption that A contains at least two
ones per row and the definition of DS. a

It is interesting to relate Theorem 7 to similar pro-
perties for the set packing problem. Given the 0,1 matrix
A, denote by AS the submatrix of A induced by a subset S
of the columns of A and by G(S) the intersection graph as-

sociated with the matrix As. Consider the inequality

7 ox: <a, (6)
jes 3 7
for some positive integer a. If the inequality (6) defines
a facet of P(A), then o = a(G(S)) and (6) defines a facet
of p(a%).

Unlike for the set packing problem, the matrix DS
needed in Theorem 7 does not usually contain all the rows
of U. In fact, it is possible to have B(Ds) < B(AS), as
shown by the following example.
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S

. (1 1 0 )

R0 1 1 o)
& 1 0 1
g A= 1 0 0 10
i, o 1 0 0 1

0o 0 1 0 1

N { J
s 3
g The inequality ‘21 Xy > 2 defines a facet of C(Aa). The matrix
B J=
K S

D" is the 3x3 submatrix of A induced by the row set R and the
column set S. Note that 8(b%) = 2 and B (a®) = 3.

For the set packing problem, Balas and Zemel (1977) gave
a necessary and sufficient condition for a facet of P(AS) to
also define a facet of P(a).

Q THEOREM 8 (Balas and Zemel 1977). Let A be a 0,1 matrix

' and BS the submatrix induced by a subset S of the columns of
A. Assume that

y ) X5 < a(G(s)) (7)
A jes

b defines a facet of P(As). Then (7) defines a facet of P(A)
& if and only if, for every j € S, the cutset (S,{j}) of

< G(S U {j}) is not eritical.

Similalrly, the following theorem gives a necessary
and sufficient condition for a facet of C(Ds) to define a

facet of C(A). Recall that B(S) denotes the bipartite in-
. S
cidence graph of D

K -
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THEOREM 9., Let A be a 0,1 matrix and DS the submatrix
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.
2%1 of A induced by a column set S and the rows i such that
ﬁﬁl a4 = 0 for every j € S. Assume that
4 I %y 2 80% (8)
3 jes
ﬁb’ defines a facet of c(DS). Then (8) defines a facet of C(A)
i and only <f, for every j € S, the cutset of B(SU{3j})
”:5 induced by {j} and S is not critical.
oo
f}ﬁ PROOF. Assume that (8) defines a facet of C(A) and
s consider j ¥ S. There must exist a feasible solution such
;i% that xj = 0 and iés X; = B(DS), otherwise fewer than n
f}@ affinely independent points would satisfy (8) with eqgua-
2&3 lity. This shows that it is possible to cover all the rows
e of DSU{j} with only B(DS) columns. In other words, the
123- cutset of B(S VU {j}) induced by{jland S is not a critical
;;é cutset.
M¢4 Conversely, assume that, for every j € S, the cut-
o set of B(S VU {j}) induced by{j}and S is not critical.
le This means that it is possible to cover all the rows of
»“ﬁ DSU{j} with a solution such that Xy = 0 and } xi=B(DS).
R To make this solution feasible for C(A) it sti?ices to
i;} set Xy = 1 for every k € S such that k # j..Denote by
;ﬂf yJ such a solution to C(A). Note that, if e’ denotes
:ﬂ? the unit vector such that xj = 1, then yj + eJ is also
a feasible solution and satisfies (8) with equality.
f;% Finally, let {xk}1ikils| be a set of |S| affinely in-
::.E-. dependent solutions such that izs x]i( = B(DS) (such so-
) lutions exist since (8) definesea facet of C(DS)), and
\EE set xf = 1 for every j € S. We claim that the points
o
e
W
‘.: T B ' e e e T A P - >, :_‘.w-:.{. e N et e Tt e
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yJ, yJ + eJ and xk generate an affine space of dimension

n-1. To see this, subtract y’ from y? + eJ. The n-|S| re-
sulting unit vectors and the |S| vectors x* are linearly
independent. This completes the proof. O

S. FACET-MINIMAL AND B-MAXIMAL 0,1 MATRICES

Given a 0,1 matrix A, we denote by L(A) the dimension
of the affine space generated by the covers of A of cardi-
nality B (A). We say that an mxn matrix A with 0,1 elements
is facet-minimal if L(A) = n and, for every mxn matrix D
with 0,1 elements such that D < A, then L(D) < L(A). This
definition yields the following result.

PROPOSITION 1., Let A be a 0,1 matrix. The inequality
n

N xj > B(A) defines a facet of C(A) <f and only if there
3=1
extsts a facet-minimal matrix Am such that A <A and

B(A ) = B(A).

We say that a 0,1 matrix A is B-maximal if, for every 0,1
matrix D of the same dimensions as A such that D > A,then
B(D) < B(A). In other words, A is B-maximal if, turning
into a 1 any entry of A which is currently 0 decreases
the covering number.

PROPOSITION 2. Let A be a 0,1 matrix and let A, be

M
a B-maximal matrix such that AM > A and B(AM) = B{(A).
n
If the tnequality 2 xj > B(A) induces a facet of C(A),
3=1

then 1t also itnduces a facet of C(D) for every 0,1 matricx

D such that A < D < AM'
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e
tele
§$‘ ; PROOF. The same n affinely independent solutions that
L5 n
; : _ show that ) x; > B(A) defines a facet of C(A) can alsobe
A , Z
av. . J=1
‘ used for C(D). O
6N
ﬁ% PROPOSITION 3. Let A be a B-maximal 0,1 matrix con-
;%& l ' taining at least one zero per row and let B = (V,U,E) be
Y
the bipartite incidence graph of A. Let G* = (V,E*) the
b
g \ erttical graph assoctiated to B. The inequality
nes
;%ﬂ n
oy .E xj > B(A)
3=1
0
) J" - . ’ .
:&? defines a facet of :he set covering polytope C(A) <f and
:ﬁ only if the graph G = (V,E¥) ¢s connected.
oty
o PROOF. The fact that the condition is sufficient is
'%@ ' stated in Theorem 2. So we have to prove that the condi-
™
3% tion is necessary.
p- Consider two nonorthogonal columns j and k. Let
. u; € U be one of the common neighbors of vj and V. Let
W
w aj g be a zero element of row i. Turning this element into
A
? . a 1 would decrease the covering number of A. Thus, we also
o .
\h$ have B (U\ {ui}) < B(U). This shows that (vj,vk) € g*.
fry To prove that c* = (V,E*) 1is connected, it suffices to
i n
;:‘ note that B is connected (otherwise | Xy > B(A) would be
J\n j=1
‘ﬁf the sum of at least two valid inequalities and, therefore,
i would not induce a facet)., O
S
tSﬁ It may be interesting to note that the concept of
ti;: f-maximal matrix is also a central notion for the facial

description of the simple plant location polytope, These

matrices were introduced by Cho, Padberg and Rao (1983)
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under the name of maximal pd-adjacency matrices.

The simple plant location polytope is the convex full
of the solutions to

n
(] oy, =1 for i = 1,...,m
j=1 "+
1 Yiy +§j51 for i=1,...,m and j=1,...,n
L ¥i5 §j € {0,1}.

Let G be the intersection graph associated with this 0,1
constraint matrix. Necessary and sufficient conditions for
a 0,1 inequality to define a facet of the simple plant lo-
cation polytope were given by Cho, Padberg and Rao (1983)
and Cornuejols and Thizy (1982). Let I € {1,...,m},

J < {1,...,n} and let A be a 0,1 matrix with rows indexed
by I and columns indexed by J. The inequality

+ ) x.
jed J

)

<
ie1l jeg

aijyij (9)
induces a facet of the simple plant location polytope if
and only if

(i) the matrix A is B-maximal and has at least two ones

and one zero per row, where B |T|+|T]-a;

(ii) o is the maximum size of a node packing in the sub-
graph of H induced by the nodes that have a positive

(9).

coefficient in

It was shown that A is f-maximal if and only

(V,E) defined above, the subgraph K*

if,

in the graph K

(V,E*) induced by the critical edges of K is connected.

(Here, the notion of critical edge refers to node packing).
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2 6. ODD HOLES AND THE ASSOCIATED B-MAXIMAL MATRICES

2

Ko The 0,1 matrices of odd order with exactly two ones
d per row and per column play a central role in the poly-
‘Q hedral theory of packings and coverings. We call such

:i matrices odd holes.

3' Let A be a 0,1 matrix. If A does not contain an odd
» hole as a submatrix, then it is well known that C(A) =
'; {x: aAx >1, 0 <x < 1}, in other words no additional

o facet is required in the description of C(A). See Ful-
» kerson, Hoffman and Oppenheim (1974). On the other hand,

consider the case where A is an odd hole of order n.Then

? the inegquality

o rz_l x5 2 ot (10)
N 3=1

? defines a facet of C(A). In fact, the same statement

fﬁ remains true for any matrix Q satisfying H < A < u*

. where H is an odd hole and H is an E%l - maximal matrix
N with the property that H* > H.Note that H is facet-minimal.
} In this section we characterize all such matrices H*
ﬂ From analgorithmic point of view,given a square 0,1 ma-
W trix A of odd order and an odd hole H < A, our charac-
K- terization allows us to decide in polynomial time whe-
5 ther the inequality (10) is valid and yields a facet of
:i c(a). Of course, if only A is given, finding H is NP-

= hard in general as it amounts to finding a Hamilton

E cycle in a bipartite graph. However, for the simple

N plant location polytope mentioned in the previous sec-
fs tion, odd holes can be generated from any odd sets I

' and J such that [I| = |J|. Then our characterization

!

3
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provides a polynomial algorithm for performing sequential
liftings of the yij variables, 1 € I and j € J. See Pad-
berg (1973) for an introduction to sequential variable
i;?fingé. Corhagjoig_;nd Thizy (1982) gave all the E%l -

maximal matrices H¥ for n = 3, 5 and 7. They were derived

using a facial description of the convex hull of the odd hole

liftings in the simple plant location polytope, see Thizy (1981).

As in earlier sections, we find it useful to work
on the bipartite incidence graph B = (V,U,E) of the 0,1
matrix A. We assume that |V|= |U| = n and that we have a
subset E; C E with |E,| = 2n such that the graph H =
(V,U,EH) is a cycle. We call the set of edges E, = E\ E

c H
the chord set of H and each edge e = (vi,uj) € E, a chord

of H. The graph B is called a chorded cycle spanged by H.

In the remainder of this section we assume that n>3
is an odd integer. We say that H is an odd cycle. More
generally, we say that a cycle of the bipartite graph B
is odd if its number of edges is 2k where k is odd.

We say that a chord H is odd if it induces two odd

cycles in H. In other words, the chord eij = (Vi'uj) is
odd if each of the two paths of H joining vy to uj forms
an odd cycle with eij‘ If a chord is not odd, it is said

to be even,

Each chord eij = (vi,uj) induces a partition of the
nodes of V into an even set Eij(vi) and an odd set Oij(v.)

1
defined as follows. Consider the graph obtained from H

by removnm;ujand the two incident edges. Given v, € V,

h

let dih be the length (number of edges) of the unique
path from A to Vi in this graph. We define Eij(vi) =
{vh €V :d;, =0 (mod 4) } and oij(vi) = {vh<5v:dih£2
(mod 4) }.

e T e

LN e IR LT e el T e
RN -("-’},V' 3O, S -."-.’-.'--.'r'-{y.\"'\"'.*". o




A el A Rt aticaid i da i i AR o . Calh™ ) Cadhs* ol (“ni b i " o= S S o

24,

ﬁ;% , Note that |Eij(vi)[ = lOij(vi)|+1 when the chord e, . is

8 odd and lEij(vi)] = ]Oij(vi)]-1 when it is even.

. Two chords eij = (vi,uj) and ey = (Vh'uk) are said

f’» to be crossing if their nodes vi,vh,uj,uk appear in this

?#% order on the graph H. The two chords are said to ke conm-
et . . .

?&J patible if vy € Eij(vi). Equivalently A € Ehk(vh).

v UZ
o EXAMPLE

S

Ay
\’-:-

N

. » \

e ,

R / ™~
:-:.- U :
L

= oo T
’ N
\:)‘ E31 (V3) = {V1IV3lv5} \ /

- A\
N 039 (vy) = {vyivyl : V
,\“'vf 3 3

Figure 2 ~ e

< .

The graph of Figure 2 is a chorded cycle spanned by the

10-cycle H drawn with solid edges. The chords ey, and ec

are poth odd. They are crossing as v3,v5,u1,u3 appear 1in
this order on H. Finally they are compatible as V5*5E31(V3).
The chord set E_. of a chorded cycle B = (V,U,E, VE )

C H C
is said to be compatible if

2y

(1) every chord is odd, and

“

A
[&

FAE)

(ii) every pair of crossing chords is compatible.

I

THEOREM 10. let A be a 0,1 matrixz and let B=(V,U,E)

-
.

fe Lrs Inceillence bipartite graph. Acsume that |[V]|=|U|=n
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= 2n such

H

is odd and that there exists Ey C E with |Eg]
¢ (

tnat H = V,U,EH) 18 a cycle. Let E. = E\ Ey be the set
of cerords of H. Then the inequaltty
n
n+1
X, > (11)
£1 j - 2

]
lefines a facet of C(A) if and only if the chord set EC
ts compatible.

Before we prove the theorem, we note a property of
pairs of odd crossing chords. Given a chord eij=(vi,vj),
consider a partition of the nodes of U into an even set
and an odd set similar to what we did for the set V.

In the graph obtained from H by removing A and the two

incident edges, we define djk to be the length of the

unique path joining uj to any other node Uy € U. Then
we define
= € : .. =
ij(uj) {uk U dJk 0 (mod 4)} and
= [ - =
Oij(uj) {u, € U : djk 2 (mod 4)1}.
Now assume that eij = (vi,uj) and ek = (vh,uk)
are two odd crossing chords. We claim that
v, € Eij(vi) tf and only tf u, € Eij(uj) (12)
To see this, remember that, since eij and ehk are
crossing, the nodes Vi’vh'uj and u, appear in this order

on the cycle H. So, the edges of H can be partitioned

and

into four paths joining vy to Vi Yy tao uj, ujto uy
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uy to Vi Let dih'dhj'djk and dki be the respective lengths
of these paths. Since eij and ek are odd chords, we have

d.,, +d,. + 1

ih hj 2w, where w is an odd integer,

and dhj + djk + 1

2z, where z is odd.

So d

ih djk + 2(w-2), i.e.

a d., (mod 4).

ih = %3k
This proves the claim (12).

PROOF OF THEOREM 10. Assume that the chord set EC is

not compatible. First assume that (i) does not hold, say
eij = (vi,uj) ii.?n even chord. Then Eij(vi) is a cover
of cardinality — contradicting the validity of in-
equality (11). Now assume that every chord is odd but
that (ii) does not hold for some pair of crossing chords
eij = (vi,uj), ek = (vh,uk). Let V1 and U1 be the nodes
of V and U respectively in the path from v, to u. which

]
contains uy . Similarly let v, and U, be the nodes cf V

2
and U in the path from A to uj which contains Vi Note
that A € V1 and VZ’ and uj € U1 and UZ' Consider the
path»P = (uk,vz,um,...,vi) from uy to vy which does not
contain uj and vy (see Figure 3.,) Define D1 to be the
minimum cover of U1 by nodes of V1 that contains the two
nodes of V, adjacent to the node u. on P. Since the two

. c _

chords eij and e x are not compatible, Vi Oij(vi).
Because the chord ehk is odd, this implies that VQ‘EOi-(V.).

ji
Since we have chosen D1 so that v € D1, we have viGED1.

Now define D, to be a minimum cover of U, by nodes of V,
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Figure 3.

that contains both vy and vy The chord eijbeing odd, we
have |D,| = (|v,]+1)/2 and ID,| = (|v,][+1)/2. Now define
Das D =D, UD,\ {v,}. as u  and u, are covered by nodes
of D, it is clear that D is a cover of U. In addition

D} = |D1| +|D,|-2 as v, has been removed and v, appears
in both D, and D,. So Ip| = (|v1]-+|v2{-2)/2. Since
vyl +|V,| = n+1, we have |[D| = (n-1)/2 and therefore

the inequality (11) is not valid, a contradiction. So the
compatibility of the chord set is a necessary condition
for (11) to be a facet.

Now we show that it is also sufficient. We only have
to prove that (11) is valid, i.e. we want to show that,if
D is a minimum cover, then |D| = (n+1)/2. Obviously, D is
still a cover in the graph obtained from B by removing
the set of chords E, = {(v,u) € E:v € D}. So in the re-

mainder we assume that we work in such a reduced graph.
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v Let e,y = (Vi’uj) be a chord such that the subgraph in-
;:; duced by one of the two paths of H joining v, to uj, say

. P, is a chordless cycle.

g\ﬁ | Consider all chords ej, = (vg,uk) such that u, € P.
?zﬁ Note that, since eij and e x are crossing chords, uy €
'M_ Eij(uj) as a consequence of claim (12). In other words,

) no node of p N Oij(uj) is covered by a node not in P.

_} : Now consider all chords e, = (vl,uk) such that
;QE v € P. Since eij and e,k are crossing, v, €PN Eij(vi)‘
ﬁw' It follows from these two observations that we can

] always find a minimum cover which coincides in P with
'gif Eij(vi)' So let us assume that D has this property. Con-
;g& sequently D not only covers P N Oij(uj) but also PfWEith).
g;{ So the chords (Vﬁ'uk) where uk € P can be removed while
i leaving D a feasible cover. Let E2 be this set of chords.
\;. Now we will show the result by induction on n.
'ig Namely we assume that the inequality (11) is valid for
v chorded cycles with compatible chord sets having less
R, than 2n nodes and we prove that it is also valid for
.:i: any chorded cycle with compatible chord set having 2n
.%ﬂ nodes. To this end, construct a new graph B'=(V',U',E')
e from B in the following way. Remove from V and U the
}ﬂj nodes of P except vy and uj, remove from the set E all
EQ the edges of P and the chord sets E1 and E2 defined
_gﬁ above. In addition, for each chord (vg,uk) where
ol v, € P\ {vi}, introduce a new chord (v,,u,). Let
la D'= DN V', By construction, D' is a cover of U' and

4
\5 B' is a chorded cycle with compatible chord set. De-
3 note by q the number of nodes of P N (V\ {Vi})' Be-

cause e, . is an odd chord, then g is even. Moreover,

ooy |v'| =n -q and |D'| = |D|-q/2. By the induction hypo-
s‘i thesis [D'| > —(D;%)—ﬂ Consequently |[D| > n_+2-_1_ . 0O

b .
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class of 0,1 facets defined from chorded cycles induced in the bipartite
incidence graph. This characerization also yields all the 0,1 1liftings of odd-hole
inequalities for the simple plant location polytope.
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